A Search for Higher-Dimensional Integrable Modified KdV Equations – The Painlevé Approach
نویسنده
چکیده
It is shown here that the possibility of the existence of new (2 + 1) dimensional integrable equations of the modified KdV equation using the Painlevé test.
منابع مشابه
The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients
The general KdV equation (gKdV) derived by T. Chou is one of the famous (1 + 1) dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable. In this paper a higher-dimensional gKdV equation, which is integrable in the sense of the Painlevé test, is presented. A transformation that links this equation to the canonical form of the Calogero–Bogoy...
متن کاملTravelling Wave Solutions for the Painlevé-integrable Coupled Kdv Equations
We study the travelling wave solutions for a system of coupled KdV equations derived by Lou et al [11]. In that paper, they found 5 types of Painlevé integrable systems for the coupled KdV system. We show that each of them can be reduced to a partially or completely uncoupled system, through which the dynamical behavior of travelling wave solutions can be determined. In some parameter regions, ...
متن کاملTraveling Wave Solutions for the Painlevé-integrable Coupled Kdv Equations
We study the traveling wave solutions for a system of coupled KdV equations derived by Lou et al [11]. In that paper, they found 5 types of Painlevé integrable systems for the coupled KdV system. We show that each of them can be reduced to a partially or completely uncoupled system, through which the dynamical behavior of traveling wave solutions can be determined. In some parameter regions, ex...
متن کاملThe Construction of Alternative Modified KdV Equation in (2 + 1) Dimensions
A typical and effective way to construct a higher dimensional integrable equation is to extend the Lax pair for a (1 + 1) dimensional equation known as integrable to higher dimensions. Here we construct an alternative modified KdV equation in (2+1) dimensions by the higherdimensional extension of a Lax pair. And it is shown that this higher dimensional modified KdV equation passes the Painlevé ...
متن کاملIntegrable Couplings of Soliton Equations by Perturbations I. A General Theory and Application to the KdV Hierarchy
A theory for constructing integrable couplings of soliton equations is developed by using various perturbations around solutions of perturbed soliton equations being analytic with respect to a small perturbation parameter. Multi-scale perturbations can be taken and thus higher dimensional integrable couplings can be presented. The theory is applied to the KdV soliton hierarchy. Infinitely many ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002